A metal sample carrying a current along X-axis with density J_x is subjected to a magnetic field B_z (along z-axis). The electric field E_y developed along Y-axis is directly proportional to J_x as well as B_z . The constant of proportionality has SI unit

[Main Online April 25, 2013]

(a)
$$\frac{m^2}{A}$$
 (b) $\frac{m^3}{As}$ (c) $\frac{m^2}{As}$ (d) $\frac{As}{m^3}$

(b) According to question

$$E_y \propto J_x B_Z$$

.. Constant of proportionality

$$K = \frac{E_y}{B_z J_x} = \frac{C}{J_x} = \frac{m^3}{As}$$

[As
$$\frac{E}{B} = C$$
 (speed of light) and $J = \frac{I}{Area}$]